De Jonquieres' formula for families of nodal curves

Kwangwoo Lee KAIST

December 20, 2012

Outline

- Introduction
 - Motivation
- 2 Hilbert Schemes
 - Tautological Modules
 - Transfer theorems
- 3 de Jonquieres' formula
 - for a curve
 - for a family of nodal curves

Outline

- Introduction
 - Motivation
- 2 Hilbert Schemes
 - Tautological Modules
 - Transfer theorems
- 3 de Jonquieres' formula
 - for a curve
 - for a family of nodal curves

• By Riemann-Roch, $D \in X^{(d)}$ satisfies $dim|D| \ge r$ iff

$$H^0(K_X) \to H^0(K_X/K_X(-D))$$
 drops rank,i.e. $rank \le d - r$.

- By Riemann-Roch, $D \in X^{(d)}$ satisfies $dim|D| \ge r$ iff
 - $H^0(K_X) \to H^0(K_X/K_X(-D))$ drops rank,i.e. $rank \le d r$.
- As *D* varies, we get a morphism of vector bundles

$$H^0(K_X)\otimes \mathcal{O}_{X^{(d)}}\to p_*(q^*K_X\otimes \mathcal{O}_{\Gamma})=:\Lambda_dK_X$$

, where $\Gamma \subset X^{(d)} \times X$ is the universal subscheme and p,q are projections to $X^{(d)}, X$.

- By Riemann-Roch, $D \in X^{(d)}$ satisfies $dim|D| \ge r$ iff
 - $H^0(K_X) \to H^0(K_X/K_X(-D))$ drops rank,i.e. $rank \le d r$.
- As D varies, we get a morphism of vector bundles

$$H^0(K_X)\otimes \mathcal{O}_{X^{(d)}}\to p_*(q^*K_X\otimes \mathcal{O}_{\Gamma})=:\Lambda_dK_X$$

- , where $\Gamma \subset X^{(d)} \times X$ is the universal subscheme and p,q are projections to $X^{(d)}, X$.
- At $D \in X^{(d)}$, $\Lambda_d K_X|_D = H^0(D, K_X|_D)$.

- By Riemann-Roch, $D \in X^{(d)}$ satisfies $dim|D| \ge r$ iff
 - $H^0(K_X) \to H^0(K_X/K_X(-D))$ drops rank, i.e. $rank \le d r$.
- As *D* varies, we get a morphism of vector bundles

$$H^0(K_X)\otimes \mathcal{O}_{X^{(d)}}\to p_*(q^*K_X\otimes \mathcal{O}_{\Gamma})=:\Lambda_dK_X$$

- , where $\Gamma \subset X^{(d)} \times X$ is the universal subscheme and p,q are projections to $X^{(d)}, X$.
- At $D \in X^{(d)}$, $\Lambda_d K_X|_D = H^0(D, K_X|_D)$. Since p is flat, $\Lambda_d K_X$ is a vector bundle of rank d.

• (d-r)-degeneracy locus= $C_d^r := \{D \in X^{(d)} | dim|D| \ge r\}.$

- (d-r)-degeneracy locus= $C_d^r := \{D \in X^{(d)} | dim|D| \ge r\}.$
- By Porteous' formula $C_d^r = \triangle_{g-d+r,r}(c_t(\Lambda_d K_X))$.

- (d-r)-degeneracy locus= $C_d^r := \{D \in X^{(d)} | dim|D| \ge r\}.$
- By Porteous' formula $C_d^r = \triangle_{g-d+r,r}(c_t(\Lambda_d K_X))$.
- If this class is not zero, then $C_d^r \neq \emptyset$, i.e. \exists a special divisor.

• Q: Count divisors of type $n_1p_1 + \cdots + n_kp_k$ in a given g_d^r .

- Q: Count divisors of type $n_1p_1 + \cdots + n_kp_k$ in a given g_d^r .
- For a $g_{d'}^r(L, V)$ and $D \in X^{(d)}$, consider the evaluation map

$$V \to H^0(L|_D).$$

- Q: Count divisors of type $n_1p_1 + \cdots + n_kp_k$ in a given g_d^r .
- For a $g_{d'}^r(L, V)$ and $D \in X^{(d)}$, consider the evaluation map

$$V \to H^0(L|_D).$$

• If this is not injective, i.e. rank $\leq r$, then $D \in (L, V)$.

- Q: Count divisors of type $n_1p_1 + \cdots + n_kp_k$ in a given g_d^r .
- For a g_d^r , (L, V) and $D \in X^{(d)}$, consider the evaluation map

$$V \to H^0(L|_D).$$

- If this is not injective, i.e. rank $\leq r$, then $D \in (L, V)$.
- As *D* varies, we get a morphism of vector bundles

$$V\otimes \mathcal{O}_{X^{(d)}}\to \Lambda_d L.$$

- Q: Count divisors of type $n_1p_1 + \cdots + n_kp_k$ in a given g_d^r .
- For a g_d^r , (L, V) and $D \in X^{(d)}$, consider the evaluation map

$$V \to H^0(L|_D)$$
.

- If this is not injective, i.e. rank $\leq r$, then $D \in (L, V)$.
- As *D* varies, we get a morphism of vector bundles

$$V \otimes \mathcal{O}_{X^{(d)}} \to \Lambda_d L$$
.

• For a *d*-partition $\mu = (n_1, \dots, n_k)$, the *r*-degeneracy locus on a diagonal locus $\Gamma_{\mu} \subset X^{(d)}$, i.e.

 $\triangle_{d-r,1}(c_t(\Lambda_d L))|_{\Gamma_\mu} = c_{d-r}(\Lambda_d L)|_{\Gamma_\mu}$ is the answer to the question provided this is finite, i.e. k = d - r.

Outline

- Introduction
 - Motivation
- 2 Hilbert Schemes
 - Tautological Modules
 - Transfer theorems
- 3 de Jonquieres' formula
 - for a curve
 - for a family of nodal curves

• We want to find the answer for a family of nodal curves.

- We want to find the answer for a family of nodal curves.
- Let $\pi: X \to B$ be a flat proper morphism with fibers nodal curves.

- We want to find the answer for a family of nodal curves.
- Let $\pi: X \to B$ be a flat proper morphism with fibers nodal curves.
- For enumerative geometry we assume that *B* is complete.

- We want to find the answer for a family of nodal curves.
- Let $\pi: X \to B$ be a flat proper morphism with fibers nodal curves.
- For enumerative geometry we assume that *B* is complete.
- As for a smooth curve, we consider the relative Hilbert scheme, $X_B^{[m]}$, parametrising length m-subschemes in a fiber.

- We want to find the answer for a family of nodal curves.
- Let $\pi: X \to B$ be a flat proper morphism with fibers nodal curves.
- For enumerative geometry we assume that *B* is complete.
- As for a smooth curve, we consider the relative Hilbert scheme, $X_B^{[m]}$, parametrising length m-subschemes in a fiber.
- Need to compute Chern classes of $\Lambda_m L$ for a line bundle L on X.

- We want to find the answer for a family of nodal curves.
- Let $\pi: X \to B$ be a flat proper morphism with fibers nodal curves.
- For enumerative geometry we assume that *B* is complete.
- As for a smooth curve, we consider the relative Hilbert scheme, $X_B^{[m]}$, parametrising length m-subschemes in a fiber.
- Need to compute Chern classes of $\Lambda_m L$ for a line bundle L on X.
- Hilbert-Chow morphism $c_m: X_B^{[m]} \to X_B^{(m)}$ is blowup of $D^{(m)} = \{\sum m_i p_i : m_i > 1 \text{ for some } i\}.$

- We want to find the answer for a family of nodal curves.
- Let $\pi: X \to B$ be a flat proper morphism with fibers nodal curves.
- For enumerative geometry we assume that *B* is complete.
- As for a smooth curve, we consider the relative Hilbert scheme, $X_B^{[m]}$, parametrising length m-subschemes in a fiber.
- Need to compute Chern classes of $\Lambda_m L$ for a line bundle L on X.
- Hilbert-Chow morphism $c_m: X_B^{[m]} \to X_B^{(m)}$ is blowup of $D^{(m)} = \{\sum m_i p_i : m_i > 1 \text{ for some } i\}.$
- Define $\Gamma^{(m)} := \frac{1}{2}c_m^{-1}(D^{(m)}).$

• For enumerative geometry of Hilbert schemes one studies flag Hilbert schemes, $X_B^{[m,m-1]}$, parametrizing (z_1,z_2) , where $z_1 \supset z_2$ and $z_1 \subset X_b$ for some b.(e.g. Lehn, Gottsche)

• For enumerative geometry of Hilbert schemes one studies flag Hilbert schemes, $X_B^{[m,m-1]}$, parametrizing (z_1,z_2) , where $z_1 \supset z_2$ and $z_1 \subset X_b$ for some b.(e.g. Lehn, Gottsche)

Theorem (Splitting principle) [Z. Ran]

On $X_B^{[m,m-1]}$, we have

$$c(\Lambda_m(L)) = c(\Lambda_{m-1}(L))c(a^*L(-\Gamma^{(m)} + \Gamma^{(m-1)})).$$

• For enumerative geometry of Hilbert schemes one studies flag Hilbert schemes, $X_B^{[m,m-1]}$, parametrizing (z_1,z_2) , where $z_1 \supset z_2$ and $z_1 \subset X_b$ for some b.(e.g. Lehn, Gottsche)

Theorem (Splitting principle) [Z. Ran]

On $X_B^{[m,m-1]}$, we have

$$c(\Lambda_m(L)) = c(\Lambda_{m-1}(L))c(a^*L(-\Gamma^{(m)} + \Gamma^{(m-1)})).$$

• Need INTERSECTION CALCULUS with $\Gamma^{(m)}$ and TRANSFER from $X_B^{[m-1]}$ to $X_B^{[m]}$.

• For this, define $T^m(X/B) \subset Hom(TS(R), A.(X_B^{[m]}))$, where $R = A \cdot (X)_{\mathbb{Q}}$.

- For this, define $T^m(X/B) \subset Hom(TS(R), A.(X_B^{[m]}))$, where $R = A \cdot (X)_Q$.
 - As a group generated by
 - O Diagonal classes Γ_μ, where μ is any partition of m, i.e. $\{ \sum m_i p_i : p_i \in X_b \text{ smooth point and } \sum m_i = m \}$

• For this, define $T^m(X/B) \subset Hom(TS(R), A.(X_B^{[m]}))$, where $R = A \cdot (X)_{\mathbb{Q}}$.

- **①** Diagonal classes Γ_{μ} , where μ is any partition of m, i.e. $\{ \sum m_i p_i : p_i \in X_b \text{ smooth point and } \sum m_i = m \}$
- Node scrolls $F_j^{n,m}(\theta)$, type $n\theta + D$, where D is a diagonal class of $(X_T^{\theta})^{[m-n]}$.

• For this, define $T^m(X/B) \subset Hom(TS(R), A.(X_B^{[m]}))$, where $R = A \cdot (X)_{\mathbb{Q}}$.

- ① Diagonal classes Γ_{μ} , where μ is any partition of m, i.e. $\{\sum m_i p_i : p_i \in X_b \text{ smooth point and } \sum m_i = m\}$
- 2 Node scrolls $F_j^{n,m}(\theta)$, type $n\theta + D$, where D is a diagonal class of $(X_T^{\theta})^{[m-n]}$.
- **1** Node sections $\Gamma^{(m)} F_j^{n,m}(\theta)$

• For this, define $T^m(X/B) \subset Hom(TS(R), A.(X_B^{[m]}))$, where $R = A \cdot (X)_{\mathbb{Q}}$.

- ① Diagonal classes Γ_{μ} , where μ is any partition of m, i.e. $\{\sum m_i p_i : p_i \in X_b \text{ smooth point and } \sum m_i = m\}$
- Node scrolls $F_j^{n,m}(\theta)$, type $n\theta + D$, where D is a diagonal class of $(X_T^{\theta})^{[m-n]}$.
- **3** Node sections $\Gamma^{(m)}F_i^{n,m}(\theta)$
- $c_m^{-1}(m\theta) = C_1^m \cup_{Q_2^m} C_2^m \cup \cdots \cup_{Q_{m-1}^m} C_{m-1}^m$.

• For this, define $T^m(X/B) \subset Hom(TS(R), A.(X_B^{[m]}))$, where $R = A \cdot (X)_{\mathbb{Q}}$.

- ① Diagonal classes Γ_{μ} , where μ is any partition of m, i.e. $\{\sum m_i p_i : p_i \in X_b \text{ smooth point and } \sum m_i = m\}$
- ② Node scrolls $F_j^{n,m}(\theta)$, type $n\theta + D$, where D is a diagonal class of $(X_T^{\theta})^{[m-n]}$.
- **o** Node sections $\Gamma^{(m)}F_i^{n,m}(\theta)$

•
$$c_m^{-1}(m\theta) = C_1^m \cup_{Q_2^m} C_2^m \cup \cdots \cup_{Q_{m-1}^m} C_{m-1}^m$$
.

$$F_j^{n,m}(\theta) \to X_B^{[m]}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$(X_T^{\theta})^{[m-n]}.$$

Theorem (Tautological module theorem) [Z. Ran]

Via intersection product, T^m is $\mathbb{Q}[\Gamma^{(m)}]$ -module.

Theorem (Tautological module theorem) [Z. Ran]

Via intersection product, T^m is $\mathbb{Q}[\Gamma^{(m)}]$ -module.

• e.g.
$$\Gamma^{(m)}\Gamma_{(m)} = \sum_{\theta,i} \frac{i(m-i)m}{2} C_i^m(\theta) - {m \choose 2} \Gamma_{(m)}[\omega].$$

• Tautological module T_{π}^{m} , where π is any partition of m

- Tautological module T_{π}^{m} , where π is any partition of m As a group generated by
 - **1** Diagonal classes Γ_{μ} , where μ is any consolidation of π ;
 - Node scrolls $F_{j,\mu}^{n,m}(\theta)$, type $n\theta + D_{\mu}$, where D is a diagonal class of $(X_T^{\theta})^{[m-n]}$;
 - **3** Node sections $\Gamma^{(m)} F_{j,\mu}^{n,m}(\theta)$

Tautological Module cont.

- Tautological module T_{π}^{m} , where π is any partition of m As a group generated by
 - **1** Diagonal classes Γ_{μ} , where μ is any consolidation of π ;
 - ② Node scrolls $F_{j,\mu}^{n,m}(\theta)$, type $n\theta + D_{\mu}$, where D is a diagonal class of $(X_T^{\theta})^{[m-n]}$;
 - **3** Node sections $\Gamma^{(m)} F_{j,\mu}^{n,m}(\theta)$

Now then we have the

Theorem

Via intersection product, T_{π}^{m} is $\mathbb{Q}[\Gamma^{(m)}]$ -module.

$$X_B^{[m,m-1]} \stackrel{a}{\to} X$$
 , where $a(z_1,z_2) = ann(z_1/z_2)$, $X_R^{[m]} \qquad X_R^{[m-1]}$

$$X_B^{[m,m-1]} \stackrel{a}{\to} X$$
 , where $a(z_1,z_2)=ann(z_1/z_2)$, $X_B^{[m]} \qquad X_B^{[m-1]}$

$$\tau_{m,f} = p_{m*}(p_{m-1}^* \otimes a^*) : T_{\pi}^{m-1} \to T_{\pi+1}^m$$
 as follows:

$$X_B^{[m,m-1]} \stackrel{a}{\to} X$$
 , where $a(z_1,z_2)=ann(z_1/z_2)$, $X_B^{[m]} \qquad X_B^{[m-1]}$

$$\tau_{m,f} = p_{m*}(p_{m-1}^* \otimes a^*) : T_{\pi}^{m-1} \to T_{\pi+1}^m$$
 as follows:

$$\bullet \ \tau_{m,f}(\Gamma_{\mu}[\alpha]\beta_{(m)}) = \Gamma_{\mu+1_1}[\alpha.\beta];$$

$$X_B^{[m,m-1]} \stackrel{a}{\to} X$$
 , where $a(z_1,z_2)=ann(z_1/z_2)$, $X_B^{[m]}$ $X_B^{[m-1]}$

$$\tau_{m,f} = p_{m*}(p_{m-1}^* \otimes a^*) : T_{\pi}^{m-1} \to T_{\pi+1}^m$$
 as follows:

$$\bullet \quad \tau_{m,f}(\Gamma_{\mu}[\alpha]\beta_{(m)}) = \Gamma_{\mu+1_1}[\alpha.\beta];$$

$$X_B^{[m,m-1]} \stackrel{a}{ o} X$$
 , where $a(z_1,z_2) = ann(z_1/z_2)$, $X_B^{[m]} \qquad X_B^{[m-1]}$

$$\tau_{m,f} = p_{m*}(p_{m-1}^* \otimes a^*) : T_{\pi}^{m-1} \to T_{\pi+1_1}^m \text{ as follows:}$$

$$\bullet \quad \tau_{m,f}(\Gamma_{\mu}[\alpha]\beta_{(m)}) = \Gamma_{\mu+1_1}[\alpha.\beta];$$

$$\bullet \quad \tau_{m,f}(F_{j,\nu}^{n,,m-1}(\theta)[\alpha]\beta_{(m)}) = F_{j,\nu+1_1}^{n,m}(\theta)[\tau_{m-n,X_T^{\theta}}(\alpha.\beta|_{X_T^{\theta}})];$$

$$\bullet \quad \tau_{m,f}((-\Gamma^{(m-1)})F_{j,\nu}^{n,m-1}(\theta)[\alpha]\beta_{(m)}) =$$

$$\theta^*(\beta)F_{j,\nu}^{n+1,m}(\theta)[\alpha] + (-\Gamma^{(m)})F_{j,\nu+1_1}^{n,m}(\theta)[\tau_{m-n,X_T^{\theta}}(\alpha.\beta|_{X_T^{\theta}})] -$$

$$F_{j,\nu+1_1}^{n,m}(\theta)[e_{j+1}^{n,m}(\tau_{m-n,X_T^{\theta}}(\alpha.\beta|_{X_T^{\theta}}))] +$$

$$F_{j,\nu+1_1}^{n,m}(\theta)[\tau_{m-n,X_T^{\theta}}(e_{j+1}^{n,m-1}(\alpha.)\beta|_{X_T^{\theta}})].$$

Punctual transfer theorem

$$\tau_{m,p} = p_{m*}p_{m-1}^*: T_{\pi}^{m-1} \to T_{\pi'}^m$$
 as follows:

$$\bullet \quad \tau_{m,p}(\Gamma_{\mu}) = \Gamma_{\mu'};$$

Punctual transfer theorem

$$\tau_{m,p} = p_{m*}p_{m-1}^*: T_{\pi}^{m-1} \to T_{\pi'}^m$$
 as follows:

$$\bullet \quad \tau_{m,p}(\Gamma_{\mu}) = \Gamma_{\mu'};$$

If a_k is a multiplicity of node,

$$\bullet \tau_{m,p}(F_{j,\nu}^{n,m-1}(\theta)) = \frac{n+1-j}{n}F_{j,\nu}^{n+1,m}(\theta) + \frac{j+1}{n}F_{j+1,\nu}^{n+1,m}(\theta);$$

Punctual transfer theorem

$$\tau_{m,p} = p_{m*}p_{m-1}^*: T_{\pi}^{m-1} \to T_{\pi'}^m$$
 as follows:

$$\bullet \quad \tau_{m,p}(\Gamma_{\mu}) = \Gamma_{\mu'};$$

If a_k is a multiplicity of node,

$$\bullet \tau_{m,p}(F_{j,\nu}^{n,m-1}(\theta)) = \frac{n+1-j}{n}F_{j,\nu}^{n+1,m}(\theta) + \frac{j+1}{n}F_{j+1,\nu}^{n+1,m}(\theta);$$

6
$$\tau_{m,p}((-\Gamma^{(m-1)})F_{j,\nu}^{n,m-1}(\theta)) =$$

$$(-\Gamma^{(m)})F_{j+1,\nu}^{n+1,m}(\theta) - F_{j+1,\nu}^{n+1,m}(\theta) \left[\left(\frac{n-j-1}{n} \psi_{j+2}^n + \frac{j+1}{n} \psi_{j+1}^n \right) \right] + \frac{n-j}{n-1}F_{j,\nu}^{n+1,m}(\theta) \left[\psi_i^{n-1} \alpha. \right] + \frac{j+1}{n-1}F_{j+1,\nu}^{n+1,m}(\theta) \left[\psi_i^{n-1} \alpha. \right].$$

Outline

- Introduction
 - Motivation
- 2 Hilbert Schemes
 - Tautological Modules
 - Transfer theorems
- 3 de Jonquieres' formula
 - for a curve
 - for a family of nodal curves

We can verify the formula for low degree

We can verify the formula for low degree

•
$$k = 1$$
,

We can verify the formula for low degree

•
$$k = 1$$
,
 $c_1(\Lambda_m(L)|_{\Gamma_{(m)}}) = (1+L)(1+L-\Gamma^{(2)})(1+L+\Gamma^{(2)}-\Gamma^{(3)})\cdots(1+L+\Gamma^{(m-1)}-\Gamma^{(m)})|_{\Gamma_{(m)}} = m(deg(L)) + {m \choose 2}(2g-2).$

We can verify the formula for low degree

•
$$k = 1$$
,
 $c_1(\Lambda_m(L)|_{\Gamma_{(m)}}) = (1+L)(1+L-\Gamma^{(2)})(1+L+\Gamma^{(2)}-\Gamma^{(3)})\cdots(1+L+\Gamma^{(m-1)}-\Gamma^{(m)})|_{\Gamma_{(m)}} = m(deg(L)) + {m \choose 2}(2g-2).$

• k = 2 and $a_1 + a_2 = m$,

$$c_{2}(\Lambda_{m}(L)|_{\Gamma_{(a_{1},a_{2})}}) = a_{1}a_{2}L^{2} + (a_{1}\binom{a_{2}}{2} + a_{2}\binom{a_{1}}{2})L\omega$$

$$- a_{1}(a_{1}a_{2} + 2\binom{a_{2}}{2})L + \binom{a_{1}}{2}\binom{a_{2}}{2}\omega^{2}$$

$$- (a_{1}a_{2}\binom{a_{1}}{2} + a_{1}\binom{a_{2}}{3} + a_{1}^{2}\binom{a_{2}}{2}$$

$$+ a_{1}\binom{a_{2}}{2}\frac{2a_{2} - 1}{3})\omega.$$

• *Plücker formulas*: the formulas relating the ramification indices of a g_d^r and the degrees of the associated maps.

• *Plücker formulas*: the formulas relating the ramification indices of a g_d^r and the degrees of the associated maps. e.g. for g_d^1 on a curve X, Plücker formula is just the *Riemann-Hurwitz formula*.

• *Plücker formulas*: the formulas relating the ramification indices of a g_d^r and the degrees of the associated maps. e.g. for g_d^1 on a curve X, Plücker formula is just the *Riemann-Hurwitz formula*. By the lemma

Lemma

$$P^{r+1}(L) \cong \Lambda_{r+1}(L)|_{\Gamma_{(r+1)}}$$

,where $P^{r+1}(L) := \pi_{1*}(\pi_2^*L \otimes \mathcal{O}_{X \times X}/\mathcal{I}_{\Delta}^{r+1})$ is the bundle of principal parts or Jet bundle of L.

• *Plücker formulas*: the formulas relating the ramification indices of a g_d^r and the degrees of the associated maps. e.g. for g_d^1 on a curve X, Plücker formula is just the *Riemann-Hurwitz formula*. By the lemma

Lemma

$$P^{r+1}(L) \cong \Lambda_{r+1}(L)|_{\Gamma_{(r+1)}}$$

,where $P^{r+1}(L) := \pi_{1*}(\pi_2^*L \otimes \mathcal{O}_{X \times X}/\mathcal{I}_{\Delta}^{r+1})$ is the bundle of principal parts or Jet bundle of L.

We have Plücker formula the sum of ramification indices = $(r+1)deg(L) + \binom{r+1}{2}(2g-2)$.

• *Plücker formulas*: the formulas relating the ramification indices of a g_d^r and the degrees of the associated maps. e.g. for g_d^1 on a curve X, Plücker formula is just the *Riemann-Hurwitz formula*. By the lemma

Lemma

$$P^{r+1}(L) \cong \Lambda_{r+1}(L)|_{\Gamma_{(r+1)}}$$

,where $P^{r+1}(L) := \pi_{1*}(\pi_2^*L \otimes \mathcal{O}_{X \times X}/\mathcal{I}_{\Delta}^{r+1})$ is the bundle of principal parts or Jet bundle of L.

We have Plücker formula the sum of ramification indices = $(r+1)deg(L) + \binom{r+1}{2}(2g-2)$.

• If k=1, L=K canonical sheaf, then the number of *Weierstrass points* is $c_1(\Lambda_g(K)|_{\Gamma_g})=(g-1)g(g+1)$.

• Consider 1-parameter family, i.e. dimB = 1.

• Consider 1-parameter family, i.e. dimB = 1. We have only finitely many nodes.

- Consider 1-parameter family, i.e. dimB = 1. We have only finitely many nodes.
- For the de Jonquieres' problem, we consider a line bundle L on X, a vector bundle E on B such that $E \subset \pi_*L$.

- Consider 1-parameter family, i.e. dimB = 1. We have only finitely many nodes.
- For the de Jonquieres' problem, we consider a line bundle *L* on *X*, a vector bundle *E* on *B* such that $E \subset \pi_*L$. That is, we have a family of $g_d^{r'}$ s.

- Consider 1-parameter family, i.e. dimB = 1. We have only finitely many nodes.
- For the de Jonquieres' problem, we consider a line bundle L on X, a vector bundle E on B such that $E \subset \pi_*L$. That is, we have a family of $g_d^{r'}$ s. For $b \in B$, $E_b \subset H^0(X_b, L_b)$.
- Compute the degeneracy locus of

$$\phi: \pi^{[m]*}(E) \to \Lambda_m(L).$$

By Porteous formula, we need to compute

$$c_2(\Lambda_m L - \pi^{[m]*}E)|_{\Gamma_{(m)}} = c_2(\Lambda_m L|_{\Gamma_{(m)}}) - c_1(\Lambda_m L|_{\Gamma_{(m)}})x,$$

$$c_3(\Lambda_m L - \pi^{[m]*}E)|_{\Gamma_{(a_1,a_2)}} = c_3(\Lambda_m L|_{\Gamma_{(a_1,a_2)}}) - c_2(\Lambda_m L|_{\Gamma_{(a_1,a_2)}})y,$$
 where $x = (\pi^{[m]})^*c_1(E) \cap [\Gamma_{(m)}]$ and $y = (\pi^{[m]})^*c_1(E) \cap [\Gamma_{(a_1,a_2)}].$

For 1-parameter family of nodal curves and for a single block, de Jonquieres' formula is

$$\begin{split} &c_{2}(\Lambda_{m}L-(\pi^{[m]})^{*}E)\cap[\Gamma_{(m)}]=c_{2}(\Lambda_{m}L|_{\Gamma_{(m)}})-c_{1}(\Lambda_{m}L|_{\Gamma_{(m)}})x\\ =&\binom{m}{2}L^{2}+(m-1)\binom{m}{2}L\omega+(3\binom{m+1}{4}-\binom{m}{3})\omega^{2}-\binom{m+1}{4}\sigma\\ &-(mL+\binom{m}{2}\omega-\sigma\sum_{i=1}^{m-1}\frac{i(m-i)m}{2}C_{i}^{m})x, \end{split}$$

where σ is number of nodes and $x = (\pi^{[m]})^* c_1(E) \cap [\Gamma_{(m)}]$.

Thank you.